شناسایی و سطح¬بندی مولفه¬های موثر بر توسعه فناوریهای نوظهور در کشاورزی با رویکرد زنجیره تأمین
محورهای موضوعی : تخصصیسید امیرعلی دیده گاه 1 * , طهمورث سهرابی 2
1 - دانشجوی دکتری مدیریت صنعتی- تولید و عملیات دانشگاه تهران. تهران. ایران
2 - استادیار گروه مدیریت صنعتی. واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: توسعه فناوری, کشاورزی, زنجیره تأمین,
چکیده مقاله :
فناوریهای جدید میتوانند صنعت کشاورزی را نیز مانند هر صنعت دیگری متحول کنند. هدف نهایی پژوهش شناسایی و سطح بندی مولفه های موثر بر توسعه فناوریهای نوظهور در کشاورزی با رویکرد زنجیره تأمین می-باشد. روش پژوهش آمیخته است و در ابتدا، مؤلفههای فناوریهای نوظهور در کشاورزی از طریق ادبیات و مصاحبه نیمه ساختاریافته با خبرگان شناساییشده است. مصاحبهها با سه روش کدگذاری باز، محوری و انتخابی کدگذاری شدند و درنهایت تعداد 34 مؤلفه و 182 شاخص بر اساس کدگذاری محوری شناسایی و در بخش کمی یک مدل ساختاری- تفسیری برای ارائه الگوی فناوریهای نوظهور در کشاورزی با استفاده ازISM متناسب با نظرات 15 نفر از خبرگان دانشگاه تربیت مدرس ایجاد گردیده است. پس از آن برای شناسایی موقعیت مؤلفههای شناسایی شده با استفاده از MICMAC مبتنی بر قدرت نفوذ و وابستگی مشخص گردید. نتایج به دست آمده فناوریهای نوظهور در کشاورزی در شش سطح شامل مقوله محوری، عوامل زمینه ای، شرایط علّی، شرایط مداخله گر، راهبردها و در نهایت، پیامدها تشکیلشده است. یافته های پژوهش نشان داده با استفاده از مدلسازی ساختاری تفسیری محل قرارگیری عوامل مختلف در نقشه پراکندگی متغیرها تحلیل میکمک انجام شد که از روی آن جایگاه متغیرهای کلیدی قابل تشخیص است. از وضعیت صفحه پراکندگی متغیرهای مؤثر بر فناوری های نوپدید در کشاورزی مشاهده شده که سیستم ناپایدار است
New technologies can transform the agricultural industry as well as any other industry. The final goal of the research is to identify and stratify the factors affecting the development of emerging technologies in agriculture with a supply chain approach. The research method is mixed and initially, the components of emerging technologies in agriculture are identified through literature and semi-structured interviews with experts. Interviews were coded with three methods of open, central and selective coding, and finally 34 components and 182 indicators were identified based on central coding and in the quantitative part a structural-interpretive model to present the model of emerging technologies in agriculture using ISM according to the opinions of 15 people. It was created by the experts of Tarbiat Modares University. After that, to identify the position of the identified components, it was determined using MICMAC based on influence and dependence. The obtained results of emerging technologies in agriculture are formed in six levels including the central category, contextual factors, causal conditions, intervening conditions, strategies and finally, consequences. The findings of the research show that by using interpretive structural modeling, the location of various factors in the dispersion map of the variables was analyzed, from which the position of the key variables can be recognized. From the state of the scatter plot of variables affecting new technologies in agriculture, it has been observed that the system is unstable
1. جمشیدی بهاره، دهقانی سانیج حسین. 1399. کلان داده های مبتنی بر اینترنت اشیاء از چشم انداز کشاورزی هوشمند. رشد فناوري.
2. حاتمی پرستو. حسینی عباسآبادی سیدهمعصومه. 1398. نقش اینترنت اشیاء در ارتقای صنعت کشاورزی در حوزه آبیاری هوشمند (و تحلیل نتایج آن در ایران). پایان نامه کارشناسی ارشد. برنامهریزی سیستمهای اقتصادی - تجارت الکترونیکی. دانشگاه غیاثالدین جمشید کاشانی، دانشکده برق و کامپیوتر.
3. حیدری دهوئی جیلیل، محمدیان ایوب، قربانی علیرضا. 1397. شناسایی و اولویت بندی کاربردهای اینترنت اشیا در کشاورزی با استفاده از شاخص های توسعه ی پایدار. مدیریت فناوری اطلاعات ـ مدیریت دانش. دانشگاه تهران، دانشکده مدیریت.
4. کوهستانی حسین. ملکی طاهره. 1395. طراحی الگوی پیشران توسعه معیشت و کشاورزی اقلیم - هوشمند جهت سازگاری با بحران دریاچه ارومیه. پایان نامه کارشناسی ارشد. مهندسی کشاورزی - توسعه کشاورزی.
5. FAO,2017. The future of food and agriculture–Trends and challenges. Annual Report
Hassan, S. I., Alam, M. M., Illahi, U., Al Ghamdi, M. A., Almotiri, S. H., & Su’ud, M. M. (2021). A Systematic Review on Monitoring and Advanced Control Strategies in Smart Agriculture. IEEE Access, 9, 32517–32548.
6. Makate, C. (2019). Effective scaling of climate smart agriculture innovations in African smallholder agriculture: A review of approaches, policy and institutional strategy needs. Environmental Science & Policy, 96, 37–51.
7. Reddy Maddikunta, P. K., Hakak, S., Alazab, M., Bhattacharya, S., Gadekallu, T. R., Khan, W. Z., & Pham, Q.-V. (2021). Unmanned Aerial Vehicles in Smart Agriculture: Applications, Requirements, and Challenges. IEEE Sensors Journal, 21(16), 17608–17619
8. Said Mohamed, E., Belal, A., Kotb Abd-Elmabod, S., El-Shirbeny, M. A., Gad, A., & Zahran, M. B. (2021). Smart farming for improving agricultural management. The Egyptian Journal of Remote Sensing and Space Science.
9. Su, Y., & Wang, X. (2021). Innovation of agricultural economic management in the process of constructing smart agriculture by big data. Sustainable Computing: Informatics and Systems, 31, 100579.
10. Tao, W., Zhao, L., Wang, G., & Liang, R. (2021). Review of the internet of things communication technologies in smart agriculture and challenges. Computers and Electronics in Agriculture, 189, 106352.
11. Totin, E., Segnon, A., Schut, M., Affognon, H., Zougmoré, R., Rosenstock, T., & Thornton, P. (2018). Institutional Perspectives of Climate-Smart Agriculture: A Systematic Literature Review. Sustainability, 10(6), 1990.
12. Walsh, D. & Ting-Fung, M. & Hon, I. Zhu, J. 2019. Artificial intelligence and avian influenza: Using machine learning to enhance active surveillance for avian influenza viruses. Transboundary and Emerging Diseases. 66. 10.1111/tbed.13318
13. wang, J. Bell, M. Liu, X. Liu, G. 2020. Machine-Learning Techniques Can Enhance DairyCow Estrus Detection Using Location andAcceleration Data. Animals2020,10, 1160; doi:10.3390/ani10071160
14. Zhang, L. Ibiba, k & Brown, W.L. 2018. "Internet of Things applications for agriculture" in Internet of Things A to Z: Technologies and Applications.First Edition. Edited by Qusay F. Hassan. by The Institute of Electrical and Electronics Engineers, Inc. Published 2018 by John Wiley & Sons, Inc
15. Zhaoyu Zhai, José Fernán Martínez, Victoria Beltran, Néstor Lucas 2020. Martínez. Decision support systems for agriculture 4.0: Survey and challenges. Computers and Electronics in Agriculture 170 (2020) 105256
16. Zhu, Y., Wu, D., Li, S., 2013. Cloud computing and agricultural development of china: theory and practice. IJCSI Int. J. Comput. Sci. 02 (0 ) 1-.00