روشی نوین برای تشخیص بیماری مبتنی بر زیرساخت اینترنت اشیاء با استفاده از الگوریتم ژنتیک و طبقه بندی کننده های مختلف
محورهای موضوعی : تخصصیسیدابراهیم دشتی رحمت آبادی 1 * , مریم نیکپور 2 , مهدی نیکپور 3 , محبوبه جوهری 4
1 - استادیار، دانشکده مهندسی برق و کامپیوتر، واحد جهرم، دانشگاه آزاد اسلامی، جهرم، فارس، ایران
2 - دانشجوی دکتری، دانشکده مهندسی برق و کامپیوتر، دانشگاه آزاد اسلامی، فارس، ایران
3 - مربی، دانشگاه علوم پزشکی بندرعباس، هرمزگان، ایران
4 - کارشناسی ارشد، دانشگاه آزاد اسلامی فسا، فارس، ایران
کلید واژه: سلامت هوشمند, یادگیری ماشین, اینترنت اشیا, یادگیری گروهی, بیماری دیابت,
چکیده مقاله :
فناوری اطلاعات پزشکی و خدمات بهداشتی و درمانی با رفاه ملی و معیشت مردم ارتباط دارد. ادغام پردازش ابری و اینترنت اشیا یک پیشرفت بزرگ در کاربرد پزشکی مدرن خواهد بود. در این تحقیق تمرکز بر روی بیماری مزمن دیابت میباشد که یکی از عوامل اصلی مرگ و میر در سراسر جهان محسوب میشود. این تحقیق تکنولوژی اطلاعات پزشکی را در زمینه اینترنت اشیا، به ویژه در زمینه کاربرد نظارت و مدیریت پزشکی بکار گرفته است. این مطالعه یک روش مبتکرانه مبتنی بر اینترنت اشیا را برای تشخیص دیابت معرفی میکند. یک معماری برای نظارت از راه دور و مدیریت پلت فرم ابر اطلاعات بهداشتی پیشنهاد و تحلیل میشود ، اطلاعات بیماران از طریق ابزارهای اینترنت اشیاء پوشیدنی و تعبیه شده بر حسب نیاز استفاده و جمع آوری میشود و در نهایت از طریق اینترنت شخص ارسال میشود. در این مقاله الگوریتم مبتنی بر الگوریتم ژنتیک و طبقه بندی ترکیبی برای تشخیص دیابت در راستای کمک به نظارت پزشکی ارائه شده است. از الگوریتمهای ژنتیک برای انتخاب ویژگیهای مرتبط بر اساس همبستگی آنها با وضعیت دیابت و وابستگیهای بین ویژگیها استفاده میکند. متعاقباً، یک مدل یادگیری مجموعهای انباشته، با ادغام طبقهبندیکنندههای SVM، KNN، ANN، درختان و GNB برای دقت بیشتر استفاده میشود. نتایج نشاندهنده عملکرد برتر رویکرد ما است و پتانسیل آن را برای بهبود مدیریت دیابت و نتایج مراقبتهای بهداشتی برجسته میکند. روش پیشنهادی از سه روش ارزیابی شده است و نتایج حاصل نشان میدهد روش پیشنهادی از عملکرد بالاتری به میزان 9 تا 57 درصد نسبت بـه روشهای پایه برخوردار بوده و به دقت ٩٣ درصد رسیده است
Medical information technology and health services are related to the national welfare and livelihood of the people. The integration of cloud computing and the Internet of Things will be a major breakthrough in modern medical applications. This study focuses on the chronic disease of diabetes, which is one of the leading causes of death worldwide. This research has applied medical information technology in the field of IoT, especially in the field of medical monitoring and management applications. A model architecture for remote monitoring and management of the health information cloud platform is proposed and analyzed, and then an algorithm based on genetic algorithm and hybrid classification for the diagnosis of diabetes is proposed for medical monitoring. The results show that the proposed method has a higher performance than the basic methods and has reached an accuracy of 94%.
[1] Ahmad, M.O., Siddiqui, S.T. (2022). The Internet of Things for Healthcare: Benefits, Applications, Challenges, Use Cases and Future Directions. In: Tiwari, S., Trivedi, M.C., Kolhe, M.L., Mishra, K., Singh, B.K. (eds) Advances in Data and Information Sciences. Lecture Notes in Networks and Systems, vol 318. .
[2] Hameed, G., Singh, Y., Haq, S., Rana, B. (2022). Blockchain-Based Model for Secure IoT Communication in Smart Healthcare. In: Singh, P.K., Kolekar, M.H., Tanwar, S., Wierzchoń, S.T., Bhatnagar, R.K. (eds) Emerging Technologies for Computing, Communication and Smart Cities. Lecture Notes in Electrical Engineering, vol 875..
[3] Li, W., Chai, Y., Khan, F. et al. A Comprehensive Survey on Machine Learning-Based Big Data Analytics for IoT-Enabled Smart Healthcare System. Mobile Netw Appl 26, 234–252 (2021)..
[4] Zheng, T., Xie, W., Xu, L., He, X., Zhang, Y., You, M., ... & Chen, Y. (2017). A machine learning-based framework to identify type 2 diabetes through electronic health records. International journal of medical informatics, 97, 120-127.
[5] Somasundaram, S. K., & Alli, P. (2017). A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy. Journal of Medical Systems, 41(12), 201.
[6] Nilashi, M., bin Ibrahim, O., Ahmadi, H., & Shahmoradi, L. (2017). An Analytical Method for Diseases Prediction Using Machine Learning Techniques. Computers & Chemical Engineering.
[7] Nilashi, M., Bin Ibrahim, O., Mardani, A., Ahani, A., & Jusoh, A. (2016). A soft computing approach for diabetes disease classification. Health Informatics Journal, 1460458216675500.
[8] Pouriyeh, S., Vahid, S., Sannino, G., De Pietro, G., Arabnia, H., & Gutierrez, J. (2017, July). A comprehensive investigation and comparison of Machine Learning Techniques in
the domain of heart disease. In Computers and Communications (ISCC), 2017 IEEE Symposium on (pp. 204-207). IEEE.
[9] Zheng, T., Xie, W., Xu, L., He, X., Zhang, Y., You, M., ... & Chen, Y. (2017). A machine learning-based framework to identify type 2 diabetes through electronic health records. International journal of medical informatics, 97, 120-127.
[10] Yaqoob I (2021) Blockchain for healthcare data management: opportunities, challenges, and future recommendations. Neural Comput Appl 0123456789.
[11] Shaikh, F. K., Zeadally, S., & Exposito, E. (2017). Enabling technologies for green internet of things. IEEE Systems Journal, 11(2), 983-994.
[12] Sicari, S., Rizzardi, A., Grieco, L. A., Piro, G., & Coen-Porisini, A. (2017). A Policy Enforcement Framework for Internet of Things Applications in the Smart Health. Smart Health.
[13] Velliangiri S, Karthikeyan Karunya P (2020) Blockchain technology: challenges and security issues in consensus algorithm. In: International conference on computer communication and informatics, ICCCI.
[14] Hossain, M. S., & Muhammad, G. (2016). Cloud-assisted industrial internet of things (iiot)–enabled framework for health monitoring. Computer Networks, 101, 192-202.
[15] Temko, A. (2017). Accurate wearable heart rate monitoring during physical exercises using PPG. IEEE Transactions on Biomedical Engineering.
[16] Philip NY, Rodrigues JJPC, Wang H, Fong SJ, Chen J (2021) Internet of Things for in-home health monitoring systems: current advances, challenges and future directions. IEEE J Sel Areas Commun 39(2):300–310.